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Introduction

Pidotimod (PTD) is a synthetic dipeptide with 
biological immunomodulatory and anti-tumour 
properties (Riboldi et al., 2009). Due to the immu-
nomodulatory activity, PTD is able both to improve 

the clinical conditions of patients and to enhance 
and stimulate their immune cell functions, thereby 
exerting adaptive and innate immune functions 
(Ferrario et al., 2015). In comparison with tradi-
tional immunomodulators, PTD is very safe, robust 
and stable (Tian and Zeng, 2005). It was shown that
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a higher PTD dose (800 mg/kg oral for rats and 
600 mg/kg oral for dogs) induced no adverse reac-
tions in these animals (Coppi et al., 1994). Moreo-
ver, the bioavailability of intramuscularly injected 
PTD was 100% but decreased to just 27% when ad-
ministered orally (Coppi and Silingardi, 1994). Due 
to a good thermal stability, it can be administered 
directly without coating (Fu et al., 2016).

Currently, the immune dipeptide is mainly ap-
plied in preventing and treating repeated respira-
tory and urinary tract infections as well as acute and 
chronic bronchitis infections both in children and 
adults (Mahashur et al., 2019). In vivo and in vitro 
experiments revealed that PTD can significantly en-
hance the functions of natural killer (NK) cells, the 
phagocytic activity of monocytes and the chemo-
tactic roles of neutrophils (Migliorati et al., 1992; 
1994). Besides, it can restore the normal expres-
sion of immuno-modulated peritoneal macrophages 
(Capsoni et al., 1992). Pidotimod induces the matu-
ration of human peripheral blood dendritic cells 
(DC) and up-regulates the expression of human leu-
kocyte DR antigen (HLA-DR) and co-stimulatory 
molecules such as CD83 and CD86 (Puggioni et al., 
2019). Moreover, it promotes the release of several 
pro-inflammatory molecules such as monocyte che-
moattractant protein-1 (MCP-1) and tumour necrosis 
factor (TNF)-α, thereby promoting the proliferation 
and differentiation of T cells into Th1 phenotype  
(Giagulli et al., 2009). In addition, in the in vitro study 
it was demonstrated that PTD can inhibit the prolif-
eration as well as induce apoptotic death of YAC-1 
tumour cells (Migliorati et al., 1993).

In recent years, the increase in intensive farming 
of highbred animals has resulted in a frequent out-
break of diseases in the farms (Amadori and Zanotti, 
2016). This raises the cost of production and lowers 
the quality of animal products. Therefore, there is an 
unmet need to develop sustainable disease preven-
tion strategies. It was noted that oral administration 
of 1 g/l of PTD increased the production of antibod-
ies in broilers, which effectively enhanced resist-
ance of birds against lethal Newcastle disease virus  
(Li et al., 2016); it was further confirmed by Qu 
et al. (2017). However, effects of PTD in pigs re-
mained to be validated. Meanwhile, piglet intestinal 
health is one of the most important factors affect-
ing pigs under intensive production systems. It was 
reported that in China, the average annual mortality 
and morbidity of piglets below 30 kg is as high as 
10.3 and 46.5%, respectively (Zhong et al., 2005). 
This underlines the role of intestinal health and 
diseases limited the expansion of the pig industry  

(Zhong et al., 2005). Although piglet intestinal 
health is often determined by the interaction of mul-
tiple factors, intestinal microbes have been shown to 
be the most fundamental factor. This is attributed to 
formation of a well-developed immune system pro-
motion (Fulde and Hornef, 2014) and provides suf-
ficient resistance against pathogens (Kamada et al., 
2013). It was observed that intestinal microbes can 
activate regulatory T cells (Treg) to secrete cy-
tokines and inhibit the overgrowth of pathogens 
(Wang et al., 2015). It is worth mentioning that pig-
let intestinal health can be improved by improving 
the immune function in animals. Unfortunately, the 
application of PTD in pig production is only scarce-
ly reported. Consequently, we explored the effect of 
PTD on the growth performance, immune function 
as well as intestinal epithelial barriers and micro-
biota composition in piglets.

Material and methods

Reagents
Pidotimod was synthesized by Shandong Qilu 

Pharmaceutical Co., Ltd. Production (Jinan, China); 
batch number: 201009001. Different amounts of 
PTD were mixed with the feed directly before the 
experiment.

Animals, diet and management
All procedures of this study were in accordane 

with the Chinese guidelines for animal welfare. All 
procedures were approved by the Institutional Animal 
Care and Use Committee of Zhejiang University 
(Zhejiang Province, China), permission number: 
ZJU20160416.

In total, 120 healthy piglets (Duroc × Landrace × 
Yorkshire) with a weight of 25.26 ± 5.96 kg were 
fed the same basal diet in a closed pigsty with 
consistent environmental conditions and feeding 
management at a suitable temperature (~23–25 ℃). 
To compare the effects of different doses of PTD 
on the growth performance, piglets were randomly 
divided into 4 groups: control group (CON) was fed 
basal diet, and treatments 1 to 3 were supplemented 
with 50, 100 and 200 mg/kg of PTD, for 44 days. 
Each group has 3 replicates, 10 piglets per replicate, 
5 barrows and 5 gilts. Feed and water were given ad 
libitum. Basal diet was formulated according to the 
nutritional requirements of the National Research 
Council (NRC, 2012). Its nutrient composition 
is shown in Table 1. Piglets were weighed at the 
beginning and the end of the trial. Before weighing, 
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pigs were fasted for 12 h and coaxed for 10 min and 
weighed after excretion of urine to calculate the 
daily weight gain. The daily feed intake was also 
recorded. According to feed intake and daily weight 
gain, the feed conversion ratio was calculated as: 

feed conversion ratio = total feed consumption 
(kg) / total weight gain (kg).

Based on the analysis of daily weight gain and 
feed conversion ratio, the supplementation with 
PTD at a dose of 50 mg/kg resulted in the best 
growth performance among the three groups, and so 
was used in the subsequent investigations.

Sample collection 
At the beginning and the end of the feeding 

test, all piglets were weighed after deprivation of 
feed overnight. Then, 3 piglets from each replicate 
(9 piglets per group) were electrically stunned, 
exsanguinated, and scalded to enable to collect 
tissues. The spleen and liver were collected, and 
the spleen was weighed after removing the adherent 
fatty tissue. The spleen index was calculated as:

spleen index (g/kg) = spleen weight / live weight 
before slaughter. 

The serum was collected for the ELISA test. 
Caecum contents were collected, stored at −80 °C 
for DNA extraction. The mid-jejunum segments 
were fixed in 2.5% glutaraldehyde, rinsed with 
0.1 M, pH 7.0 phosphate buffer, and next fixed with 

1% OsO4 buffer for transmission electron micros-
copy (TEM). Spleen and liver samples were fixed 
in 4% paraformaldehyde for hematoxylin and eosin 
(H&E) staining. The jejunum mucosa was gently 
scraped, stored at −80 °C for Western blot analysis.

Hematoxylin and eosin (H&E) staining
Liver and spleen samples of piglets fed diet sup-

plemented with PTD at a dose of 50 mg/kg were 
fixed in 4% paraformaldehyde, embedded in paraf-
fin, sliced, dehydrated, and stained with hematoxy-
lin and eosin. Images were captured using an Olym-
pus microsystem (Tokyo, Japan).

Transmission electron microscopy (TEM)
Specimens of piglets fed diet supplemented with 

PTD at a dose of 50 mg/kg were first fixed with 2.5% 
glutaraldehyde and then fixed with 1% OsO4 buffer. 
The sample was then dehydrated with a gradient of 
ethanol solution. After infiltration and embedding, 
middle jejunum samples were ultrathin sectioned 
and observed under a Hitachi Model H-7650 trans-
mission electron microscope (Tokyo, Japan).

Serum cytokines
Blood samples from piglets fed diet supple-

mented with PTD at a dose of 50 mg/kg were 
collected from the vena cava anterior and then 
centrifuged for 10 min at 4 °C (3000 g, Centrifuge 
5804R, Eppendorf, Hamburg, Germany) to obtained 
serum samples. Levels of inflammatory factors 
(interleukin (IL)-6, IL-8, tumor necrosis factor 
(TNF)-α), Th1 cytokines (IL-12 p40, interferon 
(IFN)-γ), Th2 cytokines (IL-4), anti-virus-related 
cytokines (IFN-α) and anti-inflammatory factors 
(IL-10) in serum were determined by porcine 
enzyme-linked immunosorbent assay (ELISA) 
kits according to the manufacturer’s instructions 
(eBioscience, Santa Clara, CA, USA). The standard 
curves were made according to the instructions 
(R2 > 0.99), concentrations of cytokines were then 
calculated from the standard curves.

Western blotting
The jejunum mucosal samples collected from 

piglets fed diet supplemented with PTD at a dose 
of 50 mg/kg were collected and homogenized in 
radio-immunoprecipitation assay (RIPA) buffer 
(Beyotime, Shanghai, China). The protein concen-
tration was determined using a BCA kit (Beyotime, 
Shanghai, China). After denaturation, proteins from 
each sample were separated by sodium dodecyl 
sulphate (SDS)-polyacrylamide gel electrophoresis 
and then transferred to nitrocellulose membranes 

Table 1. Composition and nutrient level of the basal diet, % as fed 
basis

Ingredients Content, % Nutrient levels2 Content, %
Maize 61.25 Digestible energy, 

MJ/kg
14.11

Soyabean meal (44% 
crude protein (CP))

15.79 Calcium 0.80

Extruded soyabean 
(36% CP)

10.00 Total phosphorus 0.63

Imported fish meal 
(65% CP)

5.00 Available 
phosphorus

0.40

Wheat bran 3.00 Lysine 1.15
Soyabean oil 1.74 Methionine + 

Cysteine
0.67

Premix1 1.00 Threonine 0.77
Limestone 0.98 Tryptophan 0.22
CaHPO4 0.78 CP 19.00
Salt 0.37 Crude ether extract 7.26
Lysine-HCl 0.09 Crude fibre 2.30

Ash 6.27
1 provided per kg of diet: mg: Zn (ZnO) 50, Cu (CuSO4) 20, Mn (MnO) 
55, Fe (FeSO4) 100, I (KI) 1, Co (CoSO4) 2, Se (Na2SeO3) 0.3; vitamin 
B1 2, vitamin B2 4, pantothenic acid 15, vitamin B6 10, vitamin B12 0.05, 
vitamin PP 30, folic acid 2, vitamin K3 1.5, biotin 0.2, choline chloride 
800, vitamin C 100; IU: vitamin A 8255, vitamin D3 2000, vitamin E 40; 
2 calculated values
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(Roche, Mannheim, Germany). The membranes 
were blocked by 5% skimmed milk then incubated 
with primary antibody overnight at 4 °C. Primary 
antibodies occludin, claudin-1 and ZO-1 (ab222691, 
ab129119, ab214228) were purchased from Abcam 
(Cambridge, UK), while β-actin antibody (AA128) 
was purchased from Beyotime (Shanghai, China). 
After incubation with secondary antibody (A0208, 
A0216, Beyotime, Shanghai, China) for 1 h at room 
temperature, the immunoreactive bands were de-
tected by an ECL system (Tanon, Shanghai, China). 
The relative band density was determined by an Im-
ageJ 1.52 software (Schneider et al., 2012).

Microbial analysis
The caecal microbial genomic DNA of pig-

lets fed diet supplemented with PTD at a dose of  
50 mg/kg was extracted by a TIANamp Stool DNA 
Kit (Tiangen, Beijing, China) following the manu-
facturer’s instructions. The V3-V4 hypervariable re-
gion of the 16S rDNA was amplified using the primer 
pair 341F (5’-CCTACGGGNGGCWGCAG-3’) and 
805R (5’-GACTACHVGGGTATCTAATCC-3’). 
The PCR procedure was set according to our pre-
vious study (Xu et al., 2018). Then the sequencing 
was performed by the MiSeq platform (Illumina 
Inc., San Diego, CA, USA). Sequences were fil-
tered and clustered into operational taxonomic units 
(OTU) at 97% similarity by a QIIME software (ver. 
1.9.1) (Caporaso et al., 2010). Bacterial OTU rep-
resentative sequences were assigned to a taxonomic 
lineage by Ribosomal Database Project (RDP) clas-
sifier based on the Greengenes database (13_8 re-
lease). Alpha diversity and beta diversity between 
samples were also analyzed by QIIME software 
using ‘alpha_diversity.py’ and ‘beta_diversity_
through_plots.py’. Beta diversity was displayed 
by principal components analysis (PCA) using the 
‘ggplot2’ package of R software and permutational 
multivariate analysis of variance (PERMANOVA) 
was calculated to determine significant differences 
in the microbial community using the ‘vegan’ pack-
age (based on the Bray-Curtis distance matrices).

Statistical analysis
Growth performance data were analyzed by 

a one-way ANOVA followed by the Tukey’s test. 
Others were analyzed for 2 groups by a two-tailed 
t-test using SPSS 22 (SPSS Inc., Chicago, IL, USA) 
for Windows and results were expressed as mean ± 
standard deviation (SD). Data were significantly dif-
ferent when P < 0.05 (*) and P < 0.01 (**). Data 
were visualized by an Origin 9.0 software (Origin 
Lab Corporation, Northampton, MA, USA). 

Results
Growth performance

As shown in Table 2, in comparison with control, 
PTD supplementation significantly increased the 
average daily weight gain of piglets (P < 0.05 and 
P < 0.01 for dose of 50 and 100 mg/kg, respectively).

Comparatively, the lower feed conversion ratio 
was stated in piglets fed diet supplemented with 
PTD at a dose of 50 mg/kg conferred the greatest 
feed conversion performance (P > 0.05), without 
inducing apparent undesirable side effects on the 
spleen and liver (Figure 1). Moreover, there were no 
differences in spleen index between the control and 
the PTD group. Accordingly, PTD dose of 50 mg/kg 
was used in the subsequent investigations.

Cytokines level 
As shown in Figure 2, in comparison with the 

control group, supplementation with PTD at a dose 
of 50 mg/kg significantly reduced serum levels of 
pro-inflammatory cytokine IL-6 (P = 0.0415), IFN-γ 
(P = 0.0041), and had no effects on TNF-α, IL-8, 
IL-4, IL-12 p40 and IFN-α cytokines (P > 0.05). 
However, it remarkably up-regulated serum levels 
of IL-10 (P = 0.0374). 

TEM observation and expression of tight 
junction proteins in the jejunum of piglets

Transmission electron microscopy further re-
vealed that in comparison with the control group, 
PTD dose of 50 mg/kg increased the intercellular 
connectivity, characterized by longer tight junc-
tion (TJ) proteins as well as denser adhesive tapes 
(AB) and desmosomes (D) in jejunal cells of piglets 

Table 2. Effect of pidotimod on the growth performance of piglets

Indices Control Pidotimod, mg/kg
50 100 200

Initial body 
weight, kg

24.60 ± 5.48 25.15 ± 5.19 24.48 ± 3.11 26.82 ± 8.86

Final body 
weight, kg

47.74 ± 5.83 51.93 ± 5.17 52.08 ± 4.2  50.5 ± 8.41

Average daily 
feed intake,  
kg/day

 1.21 ± 0.11  1.28 ± 0.03  1.40 ± 0.15  1.37 ± 0.21

Average daily 
gain, kg/day

 0.55 ± 0.01ab  0.61 ± 0.01a  0.64 ± 0.03a   0.5 ± 0.02b

Feed 
conversion 
ratio

 2.19 ± 0.19  2.10 ± 0.07  2.20 ± 0.15  2.50 ± 0.45

values are mean ± SD; data were analyzed by a one-way ANOVA 
followed by Tukey test (n = 30 in each group), ab – values with different 
superscripts for each parameter are significantly different at P < 0.05

alpha_diversity.py
beta_diversity_through_plots.py
beta_diversity_through_plots.py
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(Figure 3). Western blot analysis further revealed 
that PTD dose of 50 mg/kg supplemented to piglets 
diet up-regulated the protein expression of occludin  
(P < 0.05) and ZO-1 (P < 0.05) in jejunal mucosa 
(Figure 4). 

Pidotimod influence on intestinal microbiota
Alpha diversity analysis showed that PTD 

supplemented at a dose of 50 mg/kg significantly  
(P < 0.05) decreased the Observed_species, Chao1, 
PD_whole_tree and Ace indices (Figure 5). Principal 

Figure 1. Effects of pidotimod on spleen index (A) and histopathology of organs in piglets (B)

Control group was fed basal diet, pidotimod (PTD) group was fed basal diet supplemented with PTD at a dose of 50 mg/kg; (A): no significant 
variation has been observed on piglet spleen index: spleen index (g/kg) = spleen weight / live weight before slaughter, values are mean ± SD  
(n = 9); (B): hematoxylin and eosin staining, 40× magnification, scale bar: 200 μm; the histomorphology of organs is the same between the two 
groups; the structure of the liver and spleen is clear, and there is no obvious chronic inflammatory cell infiltration in the portal area.
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Figure 2. Effects of pidotimod on serum cytokines levels in piglets
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Figure 3. Transmission electron micrographs (TEM) of the jejunum microvilli of piglets
Control group was fed basal diet, pidotimod group (PTD) was fed basal diet supplemented with PTD at a dose of 50 mg/kg. Images were 
observed at 30,000× magnification, scale bar: 1, 0.5 and 0.2 μm; PTD group had increased intercellular connectivity, longer tight junctions (TJ), 
denser adhesive belt (AB) and desmosomes (D) in the jejunum of piglets.

 

                                          Control                                                   PTD                      

Figure 4. Effects of pidotimod on the expression of tight junction proteins in jejunal mucosa of piglets 
Control group was fed basal diet, pidotimod group (PTD) was fed basal diet supplemented with PTD at a dose of 50 mg/kg. Protein lysates from 
jejunal mucosa were examined by Western blot for occludin, claudin 1 and ZO-1 protein levels. The ratio of Occludin, Claudin 1 and ZO-1 to 
β-actin was analyzed using ImageJ software (Schneider et al., 2012); values are mean ± SD (n = 3); * – P < 0.05.
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component analysis (PCA) based on Bray-Curtis 
distance revealed that PDT had no significant effect 
on the beta diversity of microbial communities 
(R2 = 0.195, P = 0.134) (Figure 6).

In total, 24 phyla were identified in both control 
and PTD groups, there were no difference in the 
microbe number of the control group and PTD group 
at the phylum level. Firmicutes and Bacteroidetes are 
the most dominant phyla in the caecum of piglets, 
accounting for more than 90% (Figure 7) of the 
total microbiota. LDA Effect Size (LEfSe) analysis 
(Figure 8) showed that Bacilli, Lactobacillales,  

Streptococcus and Streptococcaceae were the most 
abundant taxa in the experimental group, converse 
to taxa Spirochaetales, Spirochaetaceae, Treponema, 
Peptococcaceae and rc4_4 in the control group. 

In comparison with control diet, PTD decreased 
the relative abundance of Spirochaetes (P = 0.051) 
and Verrucomicrobia (P = 0.059) at phyla level and 
that of Succinispira (P = 0.024) and Treponema 
(P = 0.048) at the genus level. However, there 
was a substantial increase in the abundance of 
Lactobacillus (P = 0.082) and Clinsella (P = 0.074) 
(Figure 9) at the genus level.
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Figure 7. Phylum distributions of intestinal microbiota
Control group was fed basal diet, pidotimod group (PTD) was fed basal diet supplemented with PTD at a dose of 50 mg/kg; n = 4.
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Figure 6. Principal component analysis (PCA) of intestinal microbial communities between the two groups based on Bray-Curtis distance
Control group was fed basal diet, pidotimod group (PTD) was fed basal diet supplemented with PTD at a dose of 50 mg/kg; n = 4.
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Figure 8. LEfSe analysis of intestinal microbiota
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Figure 9. Differentially abundant features between control and pidotimod groups at the phylum and genus levels
Control group was fed basal diet, pidotimod group (PTD) was fed basal diet supplemented with PTD at a dose of 50 mg/kg.
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Discussion

Immunomodulators can improve the growth and 
immune performance of weaned piglets, thereby 
enhancing their disease resistance capacity (Zhong 
et al., 2016). At the same time, it was shown that PTD 
did not induce teratogenic effects and reproductive 
toxicity in animals (Caramia et al., 1994; Clemente 
et al., 1994). In this study, in comparison with the 
control group, the spleen index of piglets from 
group fed diet supplemented with PTD at a dose 
of 50 mg/kg did not differ significantly and there 
were no undesirable side effects in the spleen and 
liver according to H&E staining. The spleen is 
an important immune organ, and the index of the 
spleen was found to decrease in the case of injury 
(Wu et al., 2020). Our finding provided strong 
evidence for the safety of PTD. Moreover, based on 
the average daily weight gain that was measured, 
PTD accelerated the growth of piglets. Based on the 
characteristics of PTD as an immunomodulator, we 
speculate that this may be due to the improvement 
of immune function and intestinal health.

Pidotimod promotes various aspects of the spe-
cific and non-specific immunity of the host (Tian and 
Zeng, 2005). For instance, PTD (0.5 g/l) promotes 
growth, lymphocyte proliferation, antibody produc-
tion and increases the CD4/CD8 cell ratio also in 
poultry (Qu et al., 2017). In addition, PTD enhances 
the production of IL-2 in lymphocytes (Chiarenza 
et al., 1994) as well as up-regulates the expres-
sion of IL-8 level in individuals with Tourette’s 
syndrome (Li et al., 2015). IL-6 regulates chronic 
inflammation (Murakami et al., 2019). Together 
with IL-6, IFN-γ and IL-8 are a predominant pro-
inflammatory cytokines (Zelová and Hošek, 2013; 
Kim and Moudgil, 2017). However, the up-regulat-
ed IL-8 in another study was not found this time, 
and down-regulated pro-inflammatory cytokines 
including IL-6 and IFN-γ were observed. It might 
be that no inflammation occurred in our research 
because there was no infection by a pathogen. 
Pathogen infection tends to stimulate the produc-
tion of pro-inflammatory cytokines including IL-8, 
IL-6 leading to a generation of an inflammatory re-
sponse (de Jong et al., 2006; Kobasa et al., 2007). In 
a previous study, PTD up-regulated the expression 
of IL-8 and IL-6, thereby enhancing the activity of 
the immune system for a long time (Esposito et al., 
2015; Trabattoni et al., 2017). In addition, our PTD 
treatment increased serum levels of IL-10. Given 
that IL-10 and IL-2 modulate anti-inflammation  

(Wojdasiewicz et al., 2014), PTD can inhibit in-
flammatory responses by regulating the expression 
of both pro-inflammatory and anti-inflammatory 
cytokines. This result was also observed in a previ-
ous study by Ucciferri et al. (2020), who also found 
a decreased level of pro-inflammatory cytokines in 
individuals infected with HIV. This implies that PTD 
exerts an anti-inflammatory effect in piglets through 
down-regulated pro-inflammatory cytokines and 
up-regulated anti-inflammation cytokines.

Besides being sites for digestion and food 
absorption, the intestines are the largest immune 
organs in the body. Meanwhile, the physiological 
functions of the intestines are based on the 
morphological integrity of the organ. Damage to the 
intestinal barrier disrupts their defence functions 
(Caramia et al., 1994). The intestinal epithelium 
is the first line of defence of the intestinal mucous 
system. It is comprised of connected tight junction 
(TJ) proteins which form a physical barrier against 
the entry of pathogens. The TJ is composed of 
occludin, claudins and ZO-1 proteins located in 
the cell. These three proteins are tightly bound 
together to form a TJ barrier that prevents the 
entry of antigenic substances (Swamy et al., 
2010). In this study, we found that PTD improved 
the morphological structure of intestinal mucosa 
by strengthening the physical barrier at TJ and 
reducing swelling as well as cavitation of epithelial 
cells. Defects in barrier integrity caused chronic 
inflammation of the intestine (Suzuki, 2020), 
the maintenance and protection of the TJ barrier 
could be effective for preventing diseases and 
promoting growth. In addition, PTD significantly 
up-regulated the expression of jejunal TJ proteins 
such as occludin and ZO-1. TNF-α and interleukins 
may affect paracellular permeability by altering the 
expression of proteins in the TJ, thereby disrupting 
the barrier for antigens and bacteria (Camilleri 
et al., 2012). In this study, the reducing levels of 
pro-inflammatory cytokines were found. Combined 
with the up-regulated expression of TJ proteins, we 
thought that PTD could improve intestinal barrier 
function by anti-inflammatory effect, thereby 
enhancing the intestinal anti-infection ability 
which is beneficial to maintain intestinal health. 
Overall, PTD can effectively improve the intestinal 
epithelium integrity and intestinal physical barrier 
function in piglets.

The animal intestinal microbial communities 
are interconnected, with some exhibiting antago-
nistic relationships. The dynamic intestinal micro-
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bial interactions affect the health of the host (Dun-
can and Edberg, 1995). We found Firmicutes and  
Bacteroidetes to be the predominant bacteria in the 
pig gut (>90%), which is consistent with the previ-
vous study (Kim et al., 2011). Pidotimod significantly 
reduced the relative abundance of the Spirochaetes, 
Verrucomicrobia, Succinispira and Treponema but 
increased those of the Lactobacillus and Collinsel-
la. Research shows that colonization of Spirochetes 
in the large intestine can cause several intestinal dis-
eases in animals (Shears, 1997). On the other hand, 
a high relative abundance of Verrucomicrobia in the 
intestines induced Fusobacterium nucleatum infec-
tion and promoted colonic tumorigenesis (Li et al., 
2017). Also, certain Treponema species are associ-
ated with digital dermatitis in dairy cattle (Beninger 
et al., 2018). Reducing the relative abundance of 
these harmful bacteria PTD can improve microbial 
composition. It was observed that the digestibility 
of neutral detergent fibre positively correlated with 
the abundance of Collinsella (Niu et al., 2019). 
Consequently, higher intestinal Lactobacillus and  
Collinsella levels could positively improve the in-
testinal health of animals. It is worth mentioning 
that intestinal microbes have been reported to alter 
epithelial permeability indirectly through effects 
on host immune cells and the release of cytokines, 
which can regulate barrier function (Camilleri 
et al., 2012). Lactobacillus was associated with 
barrier function integrity in vivo and in vitro (An-
derson et al., 2010; Mujagic et al., 2017). Thus, the 
increased Lactobacillus level after PTD treatment 
in our finding might contribute to intestinal health. 
Combined with previous research, it has been dem-
onstrated that PTD improves the composition of 
intestinal microbiota by reducing the relative abun-
dance of these harmful microbes and increasing the 
relative abundance of these beneficial microbes.

Conclusions

Pidotimod at a dose of 50 mg/kg may play 
a beneficial role in improving growth performance 
and intestinal health by enhancing immune 
function, intestinal epithelial barrier, and regulating 
intestinal ones. 
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